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Background

The semantic fluency task (SFT) is a free recall task that allows for
the study of organization and retrieval from semantic memory
both experimentally* and clinically?. In SFT, the participant is asked
to produce as many exemplars of the category as possible within
a fixed amount of time.

Statistical signatures of responses suggest evolutionary exaptation
of animal food search patterns switching between global
exploration and local exploitation®:

- Decrease in semantic similarity in patch transition

- Patch switches occur when a patch is sufficiently depleted

- Patch switches can be predicted by marginal value theorem®
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The Counter Argument

A retrieval mechanism is highly responsive to the assumptions of
a representational structure’. A Random Walk model could
produce the same behavior given a network representation of
memory. This was demonstrated using free association norms®
and child directed speech’.

However, model comparisons are ridden with confounds:
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Bridging Representational Assumptions

- BEAGLE® treats words as points in multidimensional space

- Network treats words as nodes connected by edges

- Need to bridge the divide between a structured network and
unstructured space
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Cue Switching Model

Cue Switching model® incorporates multiple cues dynamically
within a Luce choice rule”:

- Strategic tradeoff between exploitation and exploration

- Tradeoff operationalized as similarity and frequency cues
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Random Walk Model

Random Walk model® performs a local traversal of the network
by randomly visiting nodes based on the edge weights of
directed connections:

- Two cues, but no strategic switch
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Qualitative Comparisons
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Quantitative Comparisons
Used BIC* to evaluate the model’s ability to capture data
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Weighted Networks
- CS performs best on a
complete network, RW on a
connected network
- There is no Interaction
between model fit at any
epsilon

Unweighted Networks
- Both models perform worse
on an unweighted network.

Extended Random Walk models

Tested other random walk models®?
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- None of the new RW models
performed better than the
original

- The RWRJ model performs
best of alternative approaches.

Assumptions of the Cue Switching model:
unstructured representation + structured retrieval mechanism
Assumptions of the Random Walk model:
structured representation + unstructured retrieval mechanism

Our quantitative comparison supports the
assumptions of the Cue Switching model.




