Representation and Retrieval in Semantic Memory Johnathan E. Avery, Indiana University Michael N. Jones, Indiana University

Background

The semantic fluency task (SFT) is a free recall task that allows for the study of **organization** and **retrieval** from semantic memory both experimentally¹ and clinically². In SFT, the participant is asked to produce as many exemplars of the category as possible within a fixed amount of time.

Statistical signatures of responses suggest evolutionary exaptation of animal food search patterns switching between global exploration and local exploitation³:

- Decrease in semantic similarity in patch transition
- Patch switches occur when a patch is sufficiently depleted
- Patch switches can be predicted by marginal value theorem⁴

The Counter Argument

A retrieval mechanism is highly **responsive** to the assumptions of a **representational structure**⁵. A Random Walk model could produce the same behavior given a network representation of memory. This was demonstrated using free association norms⁶ and child directed speech⁷.

However, model comparisons are ridden with **confounds**:

	HJT	AAG
Learning	Wikipedia	USF FA
Environment		
Learning Model	BEAGLE	Human
Representation	Space	Network
Search Model	Foraging	RW

Abridged References:

¹Raajmakers et al (1981); ²Troyer et al (1998); ³Hills et al (2012); ⁴Charnov (1976); ⁵Anderson (1978); ⁶Abbott et al (2015); ⁷Nematzedah et al (2016); ⁸Jones et al (2007); ⁹Luce (1959); ¹⁰Farrell et al (2018); ¹¹Zemla et al (2017)

NMS CHILDES

> Word Learner

Network

RW

Bridging Representational Assumptions

· BEAGLE⁸ treats words as points in multidimensional space - Network treats words as nodes connected by edges - Need to bridge the divide between a structured network and unstructured space

Weighted Networks:

 $Wij < \varepsilon$ $W_{ij} = \begin{cases} 0 \\ W_{ij} \end{cases}$ $Wij \geq \varepsilon$

Cue Switching Model

Cue Switching model³ incorporates multiple cues dynamically within a Luce choice rule⁹:

- Strategic tradeoff between exploitation and exploration Tradeoff operationalized as similarity and frequency cues

$$P(X_{n+1}|Q_1,Q_2,X_n) =$$

 $W(X_{n+1}, X_n)^{\beta_{/}} \times W(X_{n+1}, "animal")^{\beta_g}$ $\sum_{k=1}^{N} W(X_k, X_n)^{\beta} \times W(X_k, "animal")^{\beta_g}$

Random Walk Model

Random Walk model⁶ performs a local traversal of the network by randomly visiting nodes based on the edge weights of directed connections:

- Two cues, but no strategic switch

 $P(X_{n+1}|Q_1, Q_2, X_n) =$

$$\rho P(X_{n+1}|Q_2) + (1-\rho)P(X_{n+1}|Q_2)$$

Unweighted Networks:

$W_{ij} = \begin{cases} 0\\ 1 \end{cases}$	(0	Wij = 0
	Wij > 0	

Assumptions of the Cue Switching model: unstructured representation + structured retrieval mechanism Assumptions of the Random Walk model: structured representation + unstructured retrieval mechanism

 $(X_{n+1}|Q_1(X_{n+1},X_n))$

Qualitative Comparisons

Evaluated the ability of the random walk model to produce the core qualitative phenomena indicative of optimal foraging. Statistical signatures may be achieved via different avenues.

Quantitative Comparisons Used BIC¹⁰ to evaluate the model's ability to capture data

Weighted Networks

- CS performs best on a complete network, RW on a connected network - There is no interaction between model fit at any epsilon

Unweighted Networks - Both models perform worse on an unweighted network.

Extended Random Walk models Tested other random walk models¹¹

- None of the new RW models performed better than the original - The RWRJ model performs best of alternative approaches.

Our quantitative comparison supports the assumptions of the **Cue Switching model**.